

High Quality Refractories In The Glass Industry

ZHENGZHOU SUNRISE TECHNOLOGY CO.,LTD

Zhengzhou Sunrise Technology Co., Ltd. is an integrated company of production and technology development. We are mainly engaged in the research and development of refractory materials. Our business mainly involves in production of fused cast AZS 33#, 36#, 41#, fused cast α - β alumina brick (TY-M), fused cast β alumina brick (TY-H), fused cast β alumina brick (TY-H), fused cast β alumina brick (TY-A), furnace fireclay bottom block ,magnesium, zircon, corundum, mullite, zirconia mullite, alumina bubble brick, low porosity clay, high alumina, etc. They are widely used in industries of glass, petrochemistry, metallurgy, building materials, etc. The products of our company are sold in markets of Europe, America, Middle East, Korea and Southeast Asia. We have established business and cooperation relationship with many customers in different countries and regions. Our company has passed ISO9001: 2000 Quality Management Systems Certification.

REFRACTORIES IN THE GLASS INDUSTRY

FUSED CAST AZS 33#

FUSED CAST AZS 36#

FUSED CAST AZS 41#

FUSED CAST α - β -Al₂O₃

FUSED CAST a -Al,O,

FUSED CAST β-Al₂O₃

CORUNDUM BRICK

FUSED SILICA BRICK

CHROMIC OXIDE BLOCK

ALUMINA BUBBLE BRICK

FIRECLAY BRICK

GLASS FURNACE BOTTOM FIRECLAY BLOCK

ZIRCON-MULLITE BRICK

SILICON CARBIDE BRICK

MULLITE BRICK

SILICA BRICK FOR GLASS KILN

SILIMANITE BRICK

MAGNSIUM SILICATE BRICK

COMMON SILICA BRICK AND LIGHT WEIGHT SILICA BRICK

ZIRCON BRICK

LOW POROSITY FIRECLAY

FIRECLAY LIGHT WEIGHT INSULATION BRICK

HIGH ALUMINA LIGHT WEIGHT INSULATION BRICK

MULLITE LIGHT WEIGHT INSULATION BRICK

FUSED CAST AZS TY-33

Shapes and sizes:

There are a great variety of formats and shapes which are available for different forming and special machine processes.

Range of application:

TY-33PT: mainly used for working ends, feeder channel, etc.

TY-33ZWS: mainly used for side walls, etc.
TY-33WS: mainly used for superstructures, crowns, sidewalls, tank bottoms, C-shaped brick and doghouse crown.

Physical and Chemical Index

		Behaviors			
Item		AZS33			
	Al ₂ O ₃	≥50.00			
Chemical Composition	ZrO ₂	≥32.50			
and the second contract of the second	SiO ₂	≤15.50			
	Na ₂ O+K ₂ O	≤1.30			
Bulk Density (g/cm³)	≥3.75				
Apparent Porosity (%)					
Cold Crushing Strength (Mp	a)	≥300			
Exudation Temperature o	f Glass Phase (°C)	≥1400			
Bubble Separation Ratio (13	00°CX10h)	≤1.2			
Anti-corrosion Rate of Glass 1500°Cx36h(mm/2		≤1.4			
	PT(RN)	≥3.55			
Apparent Density(g/cm³)	ZWS(RR)	≥3.65			
	WS(RT)	≥3.75			

FUSED CAST AZS TY-36

Range of application:

TY-36 is mainly used for side walls of flame furnaces with embedded melter bottoms, for total, security with average pulls and campaign lengths. TY-36A is mainly used for superstructures, front walls, back walls, top crown in glass melting furnace.

Shapes and sizes:

This product is only available for straight brick.

Physical and Chemical Index

THE PROPERTY OF THE PROPERTY O		Behaviors
Item		AZS36
	Al_2O_3	≥49.00
Chamical Composition	ZrO ₂	≥35.50
Chemical Composition	SiO ₂	≤13.50
	Na ₂ O+K ₂ O	≤1.35
Bulk Density (g/cm³)		≥3.85
Apparent Porosity (%)		≤1.0
Cold Crushing Strength (1	Mpa)	≥300
Exudation Temperature of	f Glass Phase (°C)	≥1400
Bubble Separation Ratio(1300°CX10h)	≤1.0
Anti-corrosion Rate of Gl 1500°Cx36h(mn		≤1.3
	PT(RN)	≥3.55
Apparent Density(g/cm³)	ZWS(RR)	≥3.75
	WS(RT)	≥3.80

ZHENGZHOU SUNRISE TECHNOLOGY CO.,LTD

FUSED CASTAZS TY-41

Shapes and sizes:

This product is available in a large size straight or approximate brick and special formats and shapes which are available for special machine processes.

Range of application:

Mainly used for sidewalls, doghouses, throat, bottom budding, Dam blocks, electric block corners.

Physical and Chemical Index

14		Behaviors
Item		AZS41
	Al ₂ O ₃	≥45.00
Chemical Composition	ZrO ₂	≥40.50
Chemical Composition	SiO ₂	≤13
	Na ₂ O+K ₂ O	≤1.3
Bulk Density (g/cm³)		≥4.00
Apparent Porosity (%)		≤1.2
Cold Crushing Strength(M	ipa)	≥300
Exudation Temperature of	Glass Phase (℃)	≥1410
Bubble Separation Ratio	(1300°CX10h)	≤1.0
Anti-corrosion Rate of Gla 1500°Cx36h(mm		≤1.2
	PT(RN)	≥3.7
Apparent Density(g/cm³)	ZWS(RR)	≥3.85
	WS(RT)	≥3.95

FUSED CAST α - β -Al₂O₃

TY-M has no contamination of glass melt, dense structure, excellent corrosion resistance of glass melt below 1350°C. It is the ideal refractory material for chanals, spouts and working ends of float glass furnace.

TY-H has high temperature, better alkali resistance and excellent thermal stability measuration. It is a new refractory material of float glass furnace of breast wall, port mouth and top crown.

 α - β - Al₂O₃ (TY-M) ★Typical Chemical Composition Al₂O₃	★Typical Crystallographic Analysis α-Al ₂ O ₃
β -Al ₂ O ₃ (TY-H)	
★ Typical Chemical Composition	★ Typical Crystallographic Analysis
Al ₂ O ₃ ·······93% Na ₂ O········6.5% Other oxides·····0.5%	α-Al ₂ O ₃ ···································
α -Al ₂ O ₃ (TY-A)	
★Typical Chemical Composition Al ₂ O ₃	\star Typical Crystallographic Analysis α -Al ₂ O ₃ ···········90% β -Al ₂ O ₃ ··········4% Vitreous phase·······6%

FUSED CAST HIGH ZIRCONIA BLOCK

The series of TY-Z are fused cast high zirconia refractories. They are made of artificial synthesis of high purity raw materials through special casting process. The crystalline texture is consisting of baddeleyite. So the characteristics of these products are excellent corrosion resistance and very low blister and stoning potential. These advantages can prevent liquid glass from pollution effectively. TY-Z can be used in a wide range of glass furnace, especially high quality and special glass furnaces such as Tvglass, Borosilicate glass, Alumina silicate glass, Halogen lighting glass, Opal glass and Fiber glass. TY-Z are mainly consisting of TY-Z88-WS and TY-Z95-WS, and used in sidewall, throat cover, throat support, electrode block, dam block parts.

Physical and Chemical Index

	Item		TY-Z88-WS	TY-Z95-WS
	ZrO ₂	≥	89.00	93.60
Chamitant	SiO ₂	\leq	9.00	5.30
Chemical Composition %	Al ₂ O ₃	<	1.00	1.00
	Na ₂ O	<	0,05	0.51
	Others	€	1.60	1.0
Mineral	Baddeleyite	Trustical	89	94
Composition %	Glass Phase	Typical	11	6
	Cold Crushing Strength (MPa)	≽	400	400
Physical Properties	Bulk Density (g/cm³)	Typical	5.10	5.30
	Liner Thermal Expansion (%)	1000℃ 1500℃	0.65 0.10	0.70 0.30

FUSED CAST SKID RAIL BLOCK

-		Behaviors T	Y-GM5		
Item		Special	Typical		
	Al ₂ O ₃	71-74	73		
	ZrO ₂	4.5-6	5.5		
Chemical	SiO ₂	17-20	19		
Composition %	Fe ₂ O ₃	≤0.5	0.5		
	Na ₂ O	≤1.0	1.0		
	CaO	≤0.5	0.5		
Apparent Porosity	5-8	<8			
True density g/cn	n³	≥3.0	3.54		
Cold Crushing Stre	ength Mpa	≥250	350		
Line Expansion 11	50℃ %		0.9		
Thermal conductivity 12	50 °C: W/MK		4.6		
D 11 D 11 / / 25	PT(RN)		≥3.0		
Bulk Density (g/cm3)	WS(VF)		≥3.2		
	Corun	dum	39		
Crystallographic	Mullite		41		
analysis %	Glass I	Phase:	15		
	Baddel	eyite	5		

Application: SKID RAIL refractory of Steel reheating furnace,

It is mainly used in areas that require high abrasion and temperature resistance, such as gliding rail bricks in steel pusher metallurgical furnaces, the tapping platform (tapping spout) style walking beam furnaces, and also as the interior for destructors.

TEL:0086-371-63838939 FAX:0371-63835539 Email: zzty371@163.com

Corundum Brick

Index	Application Limit	Al,O,	SiO,	Cr ₂ O ₂	ZrO, + HRO,	Fe _i O _i	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000°C	7	hem	ml Co [W/r		tivity	,	Range of Application
Brand	[C]	[%]	[%]	[%]	[%]	[%]	[g/ cm ²]	[Vol. %]	[N/ mm ³]	[c]	sc	[%]	200 °C	400 "C	°C	800 °C	1000	1200 °C	Application
GY 50	1500	54	16	-	26	0.3	3.10	13	80	1420	34	0.40	3.95	3.72	3.49	3.26	3.49	3.72	
GY 60	1500	60	15	7	24	0.5	3.00	17	120	1600	34	0.80	10	1.96	-	1.86	1.74	1.62	Melting tanks; Vitrification plants for filter dust and ash
GY 70	1400	70	22	5	1	0.7	2.80	13	90	1500	38	1.00	-	3.12	-	2.92	2.82	2.72	Mechanically pressed; meltingtank backup lining and forehearth channel blocks for E-glass, C-glass and mineral-wool, bushing blocks, dam and wall for coloured glass
GY 80	1650	80	4	10	1	0.5	3.10	17	80	1700	38	0.80	(da)	100		3.15	2.85	2.55	Melting tanks; Forehearth channels in
GY 90	1700	90	9	-	1	0.4	2.60	30	=	1700	39	0.70	13	*	+	2.18	2.13	2.08	For lining E-glass tanks and rocks wool furnaces

Fused Silica Brick

Index	Application Limit	SiO,	Al _i O,	Fe ₂ O ₁	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load C	Reversible Thermal Expansion at 1000°C	Thermal Conductivity [W/mK]			ivity	Thermal shock resi	Range of Application
Brand	[C]	[%]	[%]	[%]	[g/c m']	[vol. %]	[N/ mm²]	[°C]	[%]	400 °C	°C	°C	1200 °C	stance	
YS 93	1350	93	2	=	1.80	24	25	1400	0.10	1.40	1.60	1.70	1.80	Very good	Doghouse suspended wall bricks and hot repairs
YS 99	1600	399	+	+	1.80	20	30	1650	0.10	1.40	1.60	1.70	1.80	Very good	Doghouse suspended wall bricks and hot repairs

Chromic Oxide Block

Index	Application Limit	Cr,O,	TiO,	Al _i O _i	ZrO,	SiO,	Bulk Density	Apparent Perosity	Cold Crushing Strength	Refractoriness Under Load C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000 C	The		Conductivity Specific Electric Resistivity Ohm cm			tivity	Range of Application
Brand	['C]	[%]	[56]	[%]	1%1	[94]	[g/ cm']	[Vol. 56]	[N/ mm']	rq	sc	P4	*C	,C	°C	1200 °C	1000 °C	1500 *C	
CR 30	1600	30	20	60	6	3	3.40	17	70	1700	38	0.80	II.	2.20	2.20	2.30	1100 'C 1200	200	Melting tanks; Vitrification plants for filter dust and ash
CR 95	1800	96	4		8	æ	4.10	19	80	1700	42	0.75	4.80	4.20	4.00	3.80	52	4	Mechanically pressed, melting turk backup lining and forebearth channel blocks for E-glass, C-glass and mineral-wool, bushing blocks, dam and wall for coloured glass
CR 90	1700	90*	4	-	-	+	4.10	15	80	1680	40	10 + :	œ	9	*	-8	E	*	Melting tanks; Forebearth channels in container glass tanks; Vitrification plants for filter dust and ash
CR 95	1800	96	4	527	-	=	4.20	18	100	1700	42	0.75	4.80	4.20	4.00	3.80	1983	36	For lining E-glass tanks and rocks wool furnaces

Alumina Bubble Brick

Item		Behaviors					
Chemical	Al ₂ O ₃	≥98					
Composition	Fe ₂ O ₃	€0.2					
Maximum Service Ter	Maximum Service Temperature C						
Bulk Density g/cm	4	1.5-1.7					
Cold Crushing Strengtl	і Мра	≥10					
0.1Mpa Refractoriness U	nder Load T _{o.s} "C	≥1700					
Permanent Linear Change on R	ermanent Linear Change on Reheating (%) 1500°CX2h						
20-1000°C Thermal Co	≤0.9						

Fireclay Brick

Index		Ch	emical A	nalysi	s%		Bulk	Apparent	Cold Crushing	Refractoriness under Load 0.2	Refrac	toriness	Rehea Linea Chang	III	Range of Application
Brand	SiO ₂	AL ₂ O	Fe ₂ O ₃	MgO	CaO	ZrO,	Density g/cm'	Porosity%	orosity% Strength Mpa		CK	æ	The latest and the second	1350℃ 2h	
N-1		39	≤2.1				2.15	≤22	≥30	≥1400	31	1750	$^{+0.1}_{-0.4}$		
N-2a		39	≤2.1				2.10	≤24	≥25	≥1350	30	1730	$^{+0.1}_{-0.5}$		Regenerator
N-2b		34	≤2.3				2.10	≤26	≥20		30	1730	$^{+0.2}_{-0.5}$		walls Waste-gas
N-3a		34	≤2.3				2.05	≤24	≥20	≥1320	29	1710		+0.2 -0.5	channel
N-3b		32	≤2.5				2.05	≤26	≥15		29	1710		$^{+0.2}_{-0.5}$	
N-4		32	≤2.5				2.05	≤24	≥20	≥1300	28	1690		$^{+0.2}_{-0.5}$	
N-5		31	≤2.5				2.00	≤26	≥15		27	1670		$^{+0.2}_{-0.5}$	
N-6	,	31	≤2.5				2.00	≤28	≥15		23	1580			

Glass Furnace Bottom Fireclay Block

Index	CI	nemica nalysis	E5023	Bulk Density	Apparent Porosity	Strength	Refractoriness Under Load 0.2Mpa °C	Refrac	toriness	Reheating Linear Change %	Range of	
Brand	SiO ₂	Al ₂ O	Fe ₂ O ₃	g/cm³	%	Mpa	олира С	sk ℃		1400°C, 2h	Application	
BN-40a	55	≥40	≤1.5	2.3	≤18	40	1400	3	1	+0.1 -0.1	Glass furnace	
BN-45a	43	≥45	≤1.5	2.3	≤18	45	1450	31		+0.1 -0.1	Bottom layer Side wall	
BN-60	36	≥60	≤1.5	2.5	≤17	60	1500	3	1	+0.1 -0.1		

Zircon-Mullite Brick

Index	Application Limit	Al ₂ O ₃	ZrO, + HfO,	SiO ₁	Fe _i O _i	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load 'C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000°C	3	Therr Conduc [W/m	tivity		Range of Application
Brand	[c]	[%]	[%]	[%]	[%]	[g/ cm']	[Vol. %]	[N/ mm']	[q	sc	P/9	400 °C	800 *C	1000 °C	1200 °C	
ZM 17	1500	70	17	12	0.3	3.15	17		1650	31	0.60	2.49	2.19	2.04	1.89	Long-life orifice rings
ZM 20	1650	59	20	20	0.3	2.95	18	80	1680	31	0.60	7:	2.19	2.04	1.89	Tank bottom paving, tank superstructure, path blocks, perfume-bottle feeder
ZM 10	1550	73	10	15	0.2	3.00	15	50	>1500	-	0.70	-	=	-	12	Covers for working tanks and feeders
ZM 35	1650	46	33	19	0.3	3.45	í	300	1700	34	0.65	3.66	3.36	3.21	3.06	Isostatically pressed; electrode blocks, tank bottom, patch blocks and for soda lime glass

Silicon Carbide Brick

Index	Application Limit	SIC	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000 °C		Ther Condu [W/r	ctivity		Thermal Shock Resistance	Appropriate Mo	Range of Application
Brand	[C]	[%]	[g/c m³]	[vol. %]	[N/ mm']	[°C]	SC	[%]	400 *C	*C	1000 °C	1200 °C	stance	Mortars	
SICA 50	1400	50	2.40	17	50	1500	37	0.50	4.70	4.24	4.02	3.79	Very good	SK 50 MA	Muffle plates for annealing lehrs
SICA 70	1500	70	2.50	16	70	1600	38	0.45	8.03	6.18	5.25	4.33	Very good	SK 50 MD	

Mullite Brick

Index	Application Limit	Al ₂ O ₃	SiO,	Z ₂ O ₂ + H ₂ O ₂	Fe ₂ O	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load 'C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000°C	Thermal Conductivity [W/mK]		etivity	Range of Application	
Brand	[c]	[%]	[%]	[%]	[%]	[g/c m³]	[vol. %]	[n/m m²]	[°C]	sc	[%]	400°C	800°C	1000°C	:1200°C	
MU 60	1620	62	35		1.0	2.50	16	80	1700	38	0.60	1.71	1.73	1.74	1.75	Used in glass melting tank superstructure
MU 70	1650	72	26		0.6	2.50	17	80	1680	39	0.60	-	1.96	1.95	1.94	Sintered-mullite brick for superstructure of tanks and forehearths for E and borosilicate glass
MU 75	1800	75	24		0.4	2.55	19	80	>1700	39	0.55	1.99	1.96	195	1.94	Fused-mullite brick; recuperator shaft and base; tank superstructure in case od boric-acid glasses

Silica Brick for Glass Kiln

Inde	Brand	BG-96	BG-95	BG-94	SDBG-96
SiO,	, % ≥	95.5	95	94	96
Fe,C), % ≤	1.0	1.2	1.5	1.0
Al ₂ O ₃ -	+TiO ₂ +R ₂ O %			į.	0.5
Refr	actoriness				
RUL (0	0.2MPa) T ₁ , °C ≥	1650		1630	1680
AD 0/	≤15 Kg/pc.wt	20	21	22	18
AP %	≤1.51-40 Kg/pc.wt	21	22	22	20
C	CS, Mpa ≥	2	9.4	24.5	34.3
True den	sity, g/cm³ ≤	2.37	38	2.34	

Silimanite Brick

Index	Application Limit	Al ₂ O,	SiO ₂	Fe ₂ O,	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load 'C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000°C	[W/mK]					
Brand	[°C]	[%]	[%]	[%]	[g/ cm³]	[Vol. %]	[N/ mm²]	[c]	sc	[%]	400°C	800°C	1000°C	1200°C		
SL 50	1500	50	45	1.2	2.35	18	45	1550	35	0.55	1.71	1.73	1.74	1.75	Rider arches	
SL 60		60	38	1.0	2.40	20	50	1600	36	0.60	1.71	1.73	1.74	1.75	Furnace superstructure general, forehearth superstructure	
SL 70	1600	70	29	<1.0	2.40	24	10	1650	38	0.60	2.18	2.08	2.03	1.98	Bushing for rockwool and fibre glass	

Magnesium Silicate Brick

Index	Application Limit	Mgo	Sio ₂	Al _i o,	Fe ₂ 0 ₃	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load 'C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000°C	(The Cond	uctiv	vity	Range of Application
Brand	[v]	[%]	[%]	[%]	[%]	[g/cm ^r]	[vol./%]	[N./mm ¹]	[2]	sc	[%]	400°C	400T	4001	700b	
MS50	1600	52	35	7	5	2.40	27	25	1650	35	1.0	1.68	1.93	2.05	2.18	Special quality for upper section of ceramic recuperators; alkali-resistant
M855	1600	53	35	5	6:	2.65	20	30.	1650	35	ात	1.57	1.77	1.87	1.97	Checker work and chamber walls in the condensation zone; high resistance to alkali and so, attrak

Common Silica Brick and Light Weight Silica Brick

Item	For C	General Purp	ose	Light Weight Silica Brick
Index	GZ-95	GZ-94	GZ-93	QG-1.2
SiO₂ % ≥	95	94	93	91
Refractoriness	1710	1710	1690	1670
RUL (0.20MPa) T ₁ , °C ≥	1650	1640	1620	1560
Apparent porosity, % ≤	22	23	25	≥45
Cold crushing strength, Mpa ≥	29.4	24.5	19.6	3.5
True density, g/cm³ ≤	2.37	2.38	2.39	2.39
Bulk density, g/cm³ ≤				1.20

Zircon Brick

Index	Application Limit	Z-O, + H/O,	SiO ₄	Fe ₂ O ₁	Bulk Density	Apparent Porosity	Cold Crushing Strength	Refractoriness Under Load 'C	Pyrometric Cone Equivalent	Reversible Thermal Expansion at 1000°C	The	rmal Co	onductiv	ity	Range of Application
Brand	['C]	[%]	[%]	[%]	[g/ cm ¹]	[Vol. %]	[n / mm³]	['C]	sc	[%]	400 °C	1200 °C	800 °C	°C	
ZS 65	1700	65	33	0.5	3.65	19	70	1700	40	0.50	2.87	2.63	2.51	2.39	Neutral course in tank superstructure Sealing course in tank bottom
HZS 65	1700	65	33	-	4.25	1	200	1700	40	0.50	-	4.40	4.00	3.60	Isostatically pressed for borosilicate and E-glass tanks as well as forehearths
HZS 68	1700	68	30	-	4.25	5	200	1700	34	0.50	=	4,40	4.00	3.60	For glass contact in borosilicate and E-glass melters and forehearths

Low Porosity Fireclay

Index		Chem	ical A	naly	sis %		Bulk	Apparent Porosity	Cold Crushing Strength		Refrac	toriness		ating Change	Range of Application
Brand	SiO,	Al ₂ O,	Fe ₂ O ₃	MgO	CaO	ZrO,	g/cm ³	%	Mpa	0.2Mpa ℃	SK	°C	1400°C, 2h	1350°C, 2h	Regenerator
DN-12		≥45	≤1.2				2.37	≤12	68	1500	32	1770			walls, Regenerator checkers,
DN-15		≥42	≤1.5				2.3	≤15	60	1470	32	1770			Rider arches

Magnesia brick is characterized by high refractoriness, good alkali resistance and superior refractoriness under load, and it is mainly applied to the regenerators of glass kilns and other high temperature furnaces.

Iter	n	MZ-91	MZ-92	MZ-93	MZ-94
	MgO ≥	91	92	93	94.5
Chemical	SiO₂≤	4.0	3.5	2.5	2.0
composition %	Fe ₂ O ₁ ≤	1.3	5	*	1.2
	CaO ≤	2.5	2.5	2.0	1.8
Apparent Porosity	v%≤	18	18	18	18
Bulk Density g/cr	m' ≥	2.86	2.90	2.95	2.95
Cold Crushing St	rength Mpa ≥	60	60	50	60
0.2Mpa Refractor Load T _{ss} ℃	riness Under	≥1570	≥1560	≥1620	≥1650
Permanent Linear Reheating (%) 1		0∽+0.4	0∽+0.4	0∽+0,4	0∽+0.4
Thermal Shock Ro 100°C water cycle	STATE OF THE PARTY	≥18	≥18	≥18	≥18

Fused Magnesia Brick

Item		DMZ-92	DMZ-95	DMZ-97	DMZ-98
	MgO %	≥91.5	≥94.5	≥96.5	≥97.5
Chemical composition %	SiO ₂ %	≤1.7	≤1.2	≤1.0	≤0.6
Î	CaO %	≤3.5	≤2,4	≤1,2	≤1.2
Apparent Porosity 9	%	≤20	≤18	≤17	≤16
Cold Crushing Street	ngth Mpa	≥55	≥60	≥70	≥70
0.2Mpa Refractorin	ess Under Load Too	≥1580	≥1650	≥1680	≥1700
Bulk Density g/cm		≥2.90	≥2.95	≥3.05	≥3,05
Thermal Stability 95	50°C Wind cycles	≥10	≥10	≥10	≥10

DIRECT BONDED MAGNESIA CHROME BRICK

Ite	m	DMC-20	DMC-18	DMC-12	DMC-8
	MgO%≥	55	60	65	80
Chemical composition %	SiO₂%≤	2.5	2.4	1.5	1,5
	Cr ₂ O ₄ %≥	20	18	12	8
Apparent Por	rosity%≤	18	18	18	18
Bulk Density	g/cm³ ≥	3.15	3.10	2.98	2.95
Cold Crushing St	trength Mpa≥	40	40	40	45
0.2Mpa Refracto Under Load Toa		1700	1700	1680	1650
Permanent Linea Reheating (%)		0~+0.4	0~+0.4	0~+0.4	0~+0.4
	Resistances 100°C	6	6	6	6

MAGNESIA ZIRCON BRICK

Ite	m	MAGZIR-8	MAGZIR-10	MAGZIR-12	MAGZIR-13
Chemical	MgO≥	80	77	75	70
composition % ZrO₂ ≥	ZrO₂ ≥	8	10	12	13
Apparent Po	orosity%≤	19	18	18	18
Bulk Density	y g/cm' ≥	2.95	3.00	3,05	.3.05
Cold Crushing	Strength Mpa >	50	45	45	40
0.2Mpa Refrac Load T _{aa} °C ≥	toriness Under	1600	1550	1550	1600
Permanent Line Reheating (%)		0~+0.4	0~+0.4	40~+0.4	40~+0.4
Thermal Shock water cycles ≥	Resistances 100°C	10	10	10	10

Fireclay Light Weight Insulation Brick

Fireclay and high alumina light weight insulating refractory brick is a kind of insulation material adopting organic matter as ignition loss substance in order to increase the porosity of refractory, which has such advantages as high porosity, small volume density, good insulation effect, high mechanical intensity, small thermal conductivity and long service life. For various industrial kilns & furnaces, it is a kind of essential refractory for energy saving and temperature preservation.

Index	Brand	NG-0.5	NG-0.6	NG-0.8	NG-1.0
Bulk Density(g/cr	n')	0.5	0.6	0.8	1.0
Cold Crushing Str	ength MPa ≥	1.5	2.0	2.5	3.4
Reheating Linear	'C×12h	1250	1300	1350	1350
Change %	€	0.5	0.5	0.5	0.3
Thermal Conductive (350±25℃) w/r		0.18	0.25	0.35	0.50
A1,O,≥	%	35	40	42	42
Fe ₂ O ₃ ≤	%	2.5	2.5	2.0	2.0
Maximum Service	Temperature C	1150	1200	1280	1300

High Alumina Light Weight Insulation Brick

Index	Brand	LG-1.0	LG-0.8	LG-0.6
Bulk Density(g/cm³)		1.0	0.8	0.6
Cold Crushing Streng	th MPa ≥	4.00	2.94	1.96
Reheating Linear	℃×12h	1450	1400	1350
Change %	€	0.5	0.5	0.5
Thermal Conduct (350±25℃) w/		0.45	0.32	0.25
A1 ₂ O ₃ ≥%		52	52	50
Fe ₂ O ₃ ≤%		1.5	1.6	1.8
Maximum Service To	emperature °C	1380	1350	1300

Mullite Light Weight Insulation Brick

Index	Brand	MQ-0.8	MQ-1.0	MQ-1.2
Bulk Density(g/o	cm³)	0.7~0.8	0.8~1.0	1.0~1.2
Cold Crushing Stren	gth MPa ≥	2.1~4.2	3.2~4.0	3.8~5.0
Reheating Linear	°C×12h	1350	1400	1500
Change %	€	±0.5	±0.5	±0.5
Thermal Conduct (350±25°C) w		0.2~0.4	0.25~0.4	0.35~0.4
A1 ₂ O ₃ ≥	%	52	56	63
Fe ₂ O ₃ ≤%	6	1.0	0.8	0.6
Maximum Service Te	mperature °C	1350	1400	1450

Mullite Insulation Brick

Sunrise E	Brand	JM20	JM23	JM26	JM28	JM30	JM32
USA Bra	nd	IFB2000	IFB2300	IFB2600	IFB2800	IFB3000	IFB3200
Classifica Temperate		1260	1260	1430	1540	1650	1760
Bulk Densi	ty (g/cm3)	0.50-0.52	0,55-0.62	0.78-0.8	0.88	1.03	1.25
Cold Crushi (Mpa)	ing Strength	0.1	1.2	1.6	2.1	25	3.5
Modulus of (Mpa)	Rupture	0.8	0.9	1.4	1.6	2.1.	2.1
	Reheating Linear Change (%)CT-30°CX 8H		1230℃ -0.5	1400℃ -0.5	1510℃ -0.5	1620℃ -0.9	1730°C -0.9
Thermal Exp 1000°C (%		0.5	0.5	0.7	0.8	0.9	1.1
	400°C	0.14	0.14	0.27	0.32	0.41	0.49
Thermal conductivity	600°C	0.16	0.16	0.29	0.34	0.43	0.5
(W/m,k)	800℃	0.18	0.18	0.31	0.36	0.44	0.51
	1000°C	0.20	0.20	0.33	0.38	0.45	0.53
Al ₂ O ₃	(%)	35	37	54	64	72	77
Fe ₂ O ₃	(%) ≤	1.0	1.0	1.0	1.0	1.0	1.0

Diatomite Insulation Brick

Sunrise Brand		GG-0.5	GG-0.6	GG-0.7	GG-0.8	GG-0.5
Max Service Temperate	ure (°C)	900	900	900	900	900
Bulk Density (g/cm3) ≤		0.5	0.6	0.7	0.8	1.0
Cold Crushing Strength (Mpa) ≥		0.8	1.2	2.0	3.5	5.0.
Reheating Linear Ch (%) © 900 °CX 8Hi	ange r≤	0.5	0.5	0,5	0.5	0.5
Thermal conductivity (W/m, k)	300°C	0.11	0.15	0.10	0.20	0.23
SiO2 (%)		71.5	71.5	70.5	70.0	70.0
Al2O3 (%)		16.5	17.0	17.5	18.0	18.0
Fe2O3 (%)		4.0	4.2	4.5	5.0	5,0

Ceramic Fiber Blanket

	1260 Blanket	1400 Blanket	1500 Blanket	1600 Blanket
Classification temperature (°C)	1260	1425	1500	1600
Melting point (°C)	1760	1700	1760	40
Colour	White	White	Blue gree	White
Fiber diameter (u m)	2.6	2.8	2.65	3.1
Fiber length (mm)	~250	~250	~250	~100
Linear shrinkage(%)	(1100oC x 24 hrs) 1.8	(1300oC x 24 hrs) 1.5		
Shot content (>212 micro meter) (%)	18	18		
	Thermal conductivity	Kcal/mh℃ (W/mK) "ASTI	M C201	
1260 blanket	64 kg/m³	96 kg/m ¹	128 kg/m³	160 kg/m ¹
mean 400°C	0.13	0.12	0.07	0.09
mean 600 °C	0.21	0.17	0.12	0.14
mean 800°C	0.30	0.25	0.16	0.20
1400 blanket			128 kg/m²	160 kg/m²
mean 600 °C			0.13	0.14
mean 800°C			0.20	0.20
mean1000 °C			0.29	0.28
Chemical composition (%)				
Al ₂ O ₃	47.1	35.0	40,0	72
SiO ₂	52.3	49.7	58,1	28
ZrO ₂		15.0		
Cr ₂ O ₃			1.8	
Bulk density (Kg/m²)		64, 96, 128,	160	
Available size (mm/roll)	72	00*600*6,12.5,20,25,38	3;3600*600*50	

Ceramica Fiber Board

	1000 Board	1260 Board	1400 Board	1600 Board
Classification temperature (°C)	1000	1260	1425	1600
Bulk density (Kg/m³)	280	280	280	400
Linear shrinkage (%, °C x 24 hrs)	1.3 (900)	1.1 (1100)	1.6 (1200)	1.2 (1400)
Modulus of rupture (kg/cm²)	5	5	5	2
Shot content (>212 micro meter) (%)	18	18		
	Thermal conductiv	vity Kcal/mh °C (W/mk	() .ASTM C201	
	280 kg/m³	280 kg/m³	280kg/m ³	400kg/m³
mean 400 °C	0.08	0.09		
mean 600 ℃	0.13	0.14	0.10	0.15
mean 800 °C	0.20	0.20	0.14	0.18
mean1000 °C			0.20	0,25
Chemical composition (%)				
Al ₂ O ₃	40.1	44	52	58
SiO ₂	54.3	54	47	41
ZrO,				
Cr ₂ O ₃				
Available size (mm/pc)	900/1000*600*6 Density:280,300	5/12.5/20/25/30/40/50; 1) 350.400Kg/m ³	100*700*25/50	

GLASS MOULD BRICK

MD Mold Bricks characterize as follows:

Low permanent linear change on reheating Firing under the temperature of 1050 Degree. Ensures no distortion and no permanent linear change on the mold bricks.

High dense structure MD Mold Brick is manufactured from micron grade material, which is pressed molding following being mixed by high speed blender. The maximum rod is 1000 with extremely fine section structure. Good Thermal Shock Stability. No cracks even chap would be happening after long service of the bricks

Easy to be machined The Mold Brick is manufactured based on the customer request, which avoids waste from cutting of the big blocks. We have established good fame among our customers since our mold brick line was put into production with some performances superior to similar products available in the market.

MD mold bricks could also be used in thermal bending glass, thermal melting glass and art glass. We sincerely welcome the comments from all our customers.

MD Product Dimension List

Number	L(mm)	W(mm)	H(mm)
1	450	250	25-150
2	450	320	25-150
3	300	300	25-150
4	380	300	25-150
5	510	270	25-150
6	510	510	25-150
7	440	360	25-150
8	600	480	25-150
9	500	380	25-150

Physical and chemical index

		Behaviors
Item		TY-MD
Typical Chemical	Al ₂ O ₃	≥25
Composition %	Fe ₂ O ₃	≤1,5
Cold Crushing Strength Mpa	≥10	
Cold Bending Strength Mpa		≥1.5
Permanent Linear Change(%) 1000 CX24h		≤0.5
Thermal conductivity 350 ± 10°C (W/m. k)		≤0,35
Bulk Density (g/cm3)		≥1.0
Grain Size (mesh)		≤200

ZHENGZHOU SUNRISE TECHNOLOGY CO., LTD.

Add: 509,No.36 Fengchan Road,Zhengzhou, Henan, China

Tel: +86-371-63838939 60919616

Fax: +86-371-63835539 Email: zzty371@163.com Http://www.sunriserefr.com

Middle East Representative

Al-Rehab Trading Industrial Services Company P.O.Box2248 Amman 11941 Jordan

Tel: +962 6 5354396 Fax: +962 6 5354408

Email: rtisco@gmail.com